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Changepoints and Climate

A changepoint is a discontinuity in the marginal distributions of a
time-ordered sequence of data X1,X2, . . . ,Xn.

For instance, imagine an abrupt shift in:

E [Xt ] Var(Xt) P(Xt ≤ x)

at time c ∈ {1, . . . , n} (the changepoint).

Possible causes of change-
points in climate data:

Weather gauge
changes/relocations

Local climate factors
(e.g., urbanization)

Geophysical events

Problem: Even after adjusting
for changepoints, data may not
be stationary due to:

Seasonality

Trend
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A Motivating Example

The Kneeling Curve
Plots atmospheric CO2 levels (by month).
Measured at Mauna Loa, Hawaii.
Monthly observations since 1958.
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Characteristics
Quadratic (or exponential) increasing trend.
Strong seasonality.
Shifts in trend or in seasonality?
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A General Regression Model

Model the observed data yt , for 1 ≤ t ≤ n, as

yt = α̃′x̃ t + β̃
′
s̃t + γ̃ ′ṽ t + εt , (1)

where

x̃ t is a vector of functional form predictors

i.e., x̃ t = {f1(t/n), f2(t/n), . . . , fpx (t/n)}′
where fi (z) is continuous for z ∈ [0, 1] and for i = 1, . . . , px

s̃t is a vector of seasonal predictors

Assume that
∑T

t=1 s̃t = 0 for a period T .

ṽ t is a vector of (stationary) random design points

E [ṽ t ] = 0 and Var [ṽ t ] = Σ

The εt are stationary mean zero errors.

α̃, β̃, and γ̃ are vectors of regression coefficients.
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The εt are stationary mean zero errors.

α̃, β̃, and γ̃ are vectors of regression coefficients.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



A General Regression Model

Model the observed data yt , for 1 ≤ t ≤ n, as

yt = α̃′x̃ t + β̃
′
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ṽ t is a vector of (stationary) random design points
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Back to the Example

We assume the following model for the Mauna Loa CO2 data:

CO2t = α0 + α1

( t
n

)
+ α2

( t
n

)2

+
4∑

j=1

[
β1,j cos

(
2πjt

12

)
+ β2,j sin

(
2πjt

12

)]
+γ(ENSOt−12) + εt ,

where ENSOt is the El Niño/Southern Oscillation index at time t.

An equivalent representation is

CO2t = α0 + α1t + α2t
2

+
4∑

j=1

[
β1,j cos

(
2πjt

12

)
+ β2,j sin

(
2πjt

12

)]
+γ(ENSOt−12) + εt ,
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Back to the Example

The Mauna Loa CO2 data:
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Back to the Example

The Mauna Loa CO2 data with fit:
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Back to the Example

The Mauna Loa CO2 data with fit & trend:
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Back to the Example

The OLS residuals:
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Back to the Example

The ACF of the OLS residuals:
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A General Regression Changepoint Model

Let x̃ t = (x ′t , (x
∗
t )′)′, s̃t = (s ′t , (s

∗
t )′)′ and x̃ t = (x ′t , (x

∗
t )′)′.

Update the model in (1) to allow for a changepoint in the trend:

yt = (α + δx,t)
′
x t + (β + δs,t)

′
st + (γ + δv,t)

′
v t

+(α∗)′x∗t + (β∗)′s∗t + (γ∗)′v∗t + εt ,
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δt = (δ′x,t , δ
′
s,t , δ

′
v,t)
′ =

{
0, 1 ≤ t ≤ c ,
∆, c < t ≤ n,

for some unknown changepoint time c , where 1 ≤ c < n.

That is,

Coefs. corresponding to x t , st , and v t are allowed to change;

Coefs. corresponding to x∗t , s∗t , and v∗t may not change;

Designed to optimize flexibility when modeling a changepoint.

∆ (a vector) is the amount of the change.

We test H0 : ∆ = 0 vs. H1 : ∆ 6= 0.
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Test Statistics for Changepoint Detection

For now we assume that the εt are i.i.d. with Var(εt) = τ2.

When allowing a changepoint at time k , let

∆̂k — The OLS estimator of ∆

V̂ar(∆̂k) = τ̂2C−1k — The estimated covariance matrix of ∆̂k

We derive a Wald statistic via

F̂k = ∆̂
′
k [V̂ar(∆̂k)]−1∆̂k = ∆̂

′
kC k∆̂k/τ̂

2,

which equivalent to the likelihood ratio and F -tests.

To detect a change at an unknown time, we consider

F̂ = max
`≤ k

n
≤h

F̂k

for truncation values ` and h that satisfy 0 < ` < h < 1.
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Test Statistics for Changepoint Detection

Let µ̂t = α̂′x̃ t + β̂
′
w̃ t + γ̂ ′s̃t .

Next, write

ε̂t = yt − µ̂t .
The sequence {ε̂t} is referred to as the OLS residuals.

We seek to express the F̂k statistic in terms of OLS residuals for
two reasons:

Helps when determining the sampling distribution (needed for
critical values/p-values)
Helps when extending the test to situations involving
autocorrelation
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Test Statistics for Changepoint Detection

Let µ̂t = α̂′x̃ t + β̂
′
w̃ t + γ̂ ′s̃t . Next, write

ε̂t = yt − µ̂t .
The sequence {ε̂t} is referred to as the OLS residuals.

Let

Nx,k =
k∑

t=1

ε̂tx t , Ns,k =
k∑

t=1

ε̂tst , and Nv,k =
k∑

t=1

ε̂tv t .

One can show that

F̂k = F̂x,k + F̂s,k + F̂v,k ,

where

F̂x,k = N
′
x,k [Var(Nx,k)]−1Nx,k =

N
′
x,kC

−1
x,kNx,k

τ̂2
,
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N
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−1
x,kNx,k

τ̂2
,

F̂x,k is a statistic to test for only a change in trend
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where

F̂s,k = N
′
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N
′
s,kC

−1
s,kNs,k

τ̂2
,

F̂s,k is a statistic to test for only a change in seasonal coefs
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′
w̃ t + γ̂ ′s̃t . Next, write

ε̂t = yt − µ̂t .
The sequence {ε̂t} is referred to as the OLS residuals.
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where

F̂v,k = N
′
v,k [Var(Nv,k)]−1Nv,k =

N
′
v,kC

−1
v,kNv,k

τ̂2
,

F̂v,k is a statistic to test for only a change in covariate coefs
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Test Statistics for Changepoint Detection

Let µ̂t = α̂′x̃ t + β̂
′
w̃ t + γ̂ ′s̃t . Next, write

ε̂t = yt − µ̂t .
The sequence {ε̂t} is referred to as the OLS residuals.

Let

Nx,k =
k∑

t=1

ε̂tx t , Ns,k =
k∑

t=1

ε̂tst , and Nv,k =
k∑

t=1

ε̂tv t .

One can show that

F̂k = F̂x,k + F̂s,k + F̂v,k ,

where

F̂v,k = N
′
v,k [Var(Nv,k)]−1Nv,k =

N
′
v,kC

−1
v,kNv,k

τ̂2
,

F̂x,k , F̂s,k , and F̂v,k are independent of one another.
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Test Statistics for Changepoint Detection

How to derive the null hypothesis distribution of F̂ , our maximally
selected statistic for an unknown changepoint time...

Focus on the large sample (asymptotic) distribution;

It follows that under H0

F̂
D−→ sup

`<x<h
{B1(x) + B2(x)}

Note the following about the limit distribution

B1(x) is an ugly Gaussian process

B2(x) = Bps+pv (z)′Bps+pv (z)/[z(1− z)]

Bd(z) is a d-dimensional set of independent Brownian bridges

The limit distribution depends only on the form of x t and x∗t
(and the dimensionality of st and v t).
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Autocorrelated Errors

Relax the assumption of independent errors (εt).

Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Autocorrelated Errors

Relax the assumption of independent errors (εt). Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Autocorrelated Errors

Relax the assumption of independent errors (εt). Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Autocorrelated Errors

Relax the assumption of independent errors (εt). Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Autocorrelated Errors

Relax the assumption of independent errors (εt). Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Autocorrelated Errors

Relax the assumption of independent errors (εt). Let

τ2 = lim
n→∞

1

n
Var

(
n∑

t=1

εt

)
,

The Bartlett estimator of τ2 (requires qn, a bandwidth parameter):

τ̂2B =
1

n

n∑
t=1

ε̂2t + 2

qn∑
s=1

(
1− s

qn + 1

)
1

n − s

n−s∑
t=1

ε̂t ε̂t+s ,

It is possible to construct versions of F̂x,k , F̂s,k , and F̂v,k that still
use OLS residuals but encapsulate autocorrelation through a
Bartlett-type variance estimator.

In this case, F̂ = max`< k
n
<h{F̂x,k + F̂s,k + F̂v,k} has the same

limit distribution as in the iid case.

Convergence is slow.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



ARMA Models

Can assume that εt obeys an ARMA(par, qma) model:

εt − φ1εt−1 − · · · − φparεt−par = Zt + θ1Zt−1 + · · ·+ θq∗Zt−qma ,

where Zt
i .i .d .∼ N(0, σ2) are the ARMA errors.

We may calculate {Ẑt}, a sequence of ARMA residuals, via

Ẑt = ε̂t − φ̂1ε̂t−1 − · · · − φ̂par ε̂t−par − θ̂1Ẑt−1 − · · · − θ̂qmaẐt−qma .

If we replace OLS residuals with ARMA residuals when calculating
the test statistics, we can obtain better finite sample performance.

This is a so-called L statistic (e.g., L̂x,k , L̂s,k , L̂v,k).

The resulting quantity is underpinned by white noise
components.

Faster convergence
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We may calculate {Ẑt}, a sequence of ARMA residuals, via

Ẑt = ε̂t − φ̂1ε̂t−1 − · · · − φ̂par ε̂t−par − θ̂1Ẑt−1 − · · · − θ̂qmaẐt−qma .
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We may calculate {Ẑt}, a sequence of ARMA residuals, via

Ẑt = ε̂t − φ̂1ε̂t−1 − · · · − φ̂par ε̂t−par − θ̂1Ẑt−1 − · · · − θ̂qmaẐt−qma .
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Procedures Based on ARMA residuals

Let

Rx,k =
k∑

t=1

x t Ẑt ,

(
OLS: Nx,k =

k∑
t=1

x t ε̂t

)

A lemma gives an asymptotic equivalence b/w Nx,k/τ and Rx,k/σ.

Also let

L̂x,k =
R
′
x,kC

−1
x,kRx,k

σ̂2
,

(
OLS: F̂x,k =

N
′
x,kC

−1
x,kNx,k

τ̂2

)

Thus, F̂x,k and L̂x,k are asymptotically equivalent.
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x t Ẑt ,

(
OLS: Nx,k =

k∑
t=1

x t ε̂t

)
A lemma gives an asymptotic equivalence b/w Nx,k/τ and Rx,k/σ.

Also let

L̂x,k =
R
′
x,kC

−1
x,kRx,k

σ̂2
,

(
OLS: F̂x,k =

N
′
x,kC

−1
x,kNx,k

τ̂2

)

Thus, F̂x,k and L̂x,k are asymptotically equivalent.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Procedures Based on ARMA residuals

Let

Rx,k =
k∑

t=1

x t Ẑt ,
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)
A lemma gives an asymptotic equivalence b/w Nx,k/τ and Rx,k/σ.

Also let

L̂x,k =
R
′
x,kC

−1
x,kRx,k

σ̂2
,

(
OLS: F̂x,k =

N
′
x,kC

−1
x,kNx,k

τ̂2

)
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Procedures Based on ARMA residuals

Let

Rs,k =
k∑

t=1

st Ẑt −
k

n

n∑
t=1

st Ẑt ,

(
OLS: Ns,k =

k∑
t=1

st ε̂t

)

We can show that Ns,k and Rs,k have the same asymptotic
distribution when scaled properly.

Also let

L̂s,k =
R
′
s,kD−1T Rs,k

σ̂2k(1− k
n )

,
(

OLS: F̂s,k = N
′
s,k τ̂

−1
s Ns,k

)
It follows that F̂s,k and L̂s,k have the same asymptotic distribution.
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st Ẑt ,

(
OLS: Ns,k =

k∑
t=1

st ε̂t

)

We can show that Ns,k and Rs,k have the same asymptotic
distribution when scaled properly.

Also let

L̂s,k =
R
′
s,kD−1T Rs,k

σ̂2k(1− k
n )

,
(

OLS: F̂s,k = N
′
s,k τ̂

−1
s Ns,k

)
It follows that F̂s,k and L̂s,k have the same asymptotic distribution.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Procedures Based on ARMA residuals

Let

Rv,k =
k∑

t=1

v t Ẑt −
k

n

n∑
t=1

v t Ẑt ,

(
OLS: Nv,k =

k∑
t=1

v t ε̂t

)

We can show that Nv,k and Rv,k have the same asymptotic
distribution when scaled properly.

Also let

L̂v,k =
R
′
v,kΣ̂

−1
v Rv,k

σ̂2k(1− k
n )

,
(

OLS: F̂v,k = N
′
v,k τ̂

−1
v Nv,k

)
It follows that F̂v,k and L̂v,k have the same asymptotic distribution.
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v t Ẑt ,

(
OLS: Nv,k =

k∑
t=1

v t ε̂t

)

We can show that Nv,k and Rv,k have the same asymptotic
distribution when scaled properly.

Also let

L̂v,k =
R
′
v,kΣ̂

−1
v Rv,k

σ̂2k(1− k
n )

,
(

OLS: F̂v,k = N
′
v,k τ̂

−1
v Nv,k

)
It follows that F̂v,k and L̂v,k have the same asymptotic distribution.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Procedures Based on ARMA residuals

Let

Rv,k =
k∑

t=1

v t Ẑt −
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v t Ẑt ,

(
OLS: Nv,k =

k∑
t=1

v t ε̂t

)

We can show that Nv,k and Rv,k have the same asymptotic
distribution when scaled properly.

Also let

L̂v,k =
R
′
v,kΣ̂

−1
v Rv,k

σ̂2k(1− k
n )

,
(

OLS: F̂v,k = N
′
v,k τ̂

−1
v Nv,k

)

It follows that F̂v,k and L̂v,k have the same asymptotic distribution.

Michael Robbins RAND Corporation A General Regression Changepoint Test for Time Series Data



Procedures Based on ARMA residuals

Let

Rv,k =
k∑

t=1

v t Ẑt −
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Procedures Based on ARMA residuals

An omnibus test based on ARMA residuals for a changepoint at
time k is

L̂k = L̂x,k + L̂s,k + L̂v,k

To detect a change at an unknown time, we consider

L̂ = max
`≤ k

n
≤h

L̂k

It follows that under H0

L̂
D−→ sup

`<x<h
{B1(x) + B2(x)},

which is the limit process that was observed by the statistic F̂ .
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Simulations

The efficacy of the proposed methodology is studied via simulation.

Here, we isolate to the following predictor model:

yt = α0+α1

( t
n

)
+α2

( t
n

)2
+γ1 cos

(
2πt

12

)
+γ2 sin

(
2πt

12

)
+ζCt+εt

Values of parameters are chosen to coincide with those estimated
under H0 for the CO2 data example.

The error sequence {εt} is generated via an AR(1):

εt = φ1εt−1 + Zt
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Simulations

Four settings are examined (fix n = 1000 with c = 500 under H1):

Setting 1: All regression coefficients may change under H1.

Setting 2: Only coefficients governing trend may change.

Setting 3: Only coefficients governing seasonality may change.

Setting 4: Only coefficients governing covariates may change.

We examine type I error as a function of φ, the AR(1) parameter.

We examine power as a function of δ, where ∆ = δd , where d is
an arbitrary vector (we fix φ = 0.5).

We calculate two types of statistics:

Procedures based on OLS residuals (F̂ );

Autocorrelation is captured through Bartlett-based estimators.

Procedures based on ARMA residuals (L̂).
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Simulations

Setting 1: All regression coefficients may change under H1.
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Simulations

Setting 2: Only coefficients governing trend may change.
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Simulations

Setting 2: Only coefficients governing trend may change.
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Simulations

Setting 3: Only coefficients governing seasonality may change.
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Simulations

Setting 3: Only coefficients governing seasonality may change.
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Simulations

Setting 4: Only coefficients governing covariates may change.
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Simulations

Setting 4: Only coefficients governing covariates may change.
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Application to the CO2 Data

Fit an AR(par) model to the OLS residuals of the CO2 data.

Setting 2: Only coefficients governing trend change.

F̂ L̂
qn ĉ Stat. p-value par ĉ Stat. p-value

2 1991 155.1 0.0000 2 1991 24.1 0.0027
4 1991 97.5 0.0000 4 1991 20.3 0.0117
8 1991 57.5 0.0000 8 1991 18.9 0.0223

12 1991 41.2 0.0000 12 1991 20.5 0.0110
16 1991 32.3 0.0001 16 1991 16.3 0.0587
24 1991 23.3 0.0037 24 1991 17.7 0.0325

Table: Results of the tests for values of the autoregressive order (par)
and the lag cut-off for the Bartlett estimator (qn).
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Application to the CO2 Data

Fit an AR(par) model to the OLS residuals of the CO2 data.

Setting 3: Only coefficients governing seasonality change.

F̂ L̂
qn ĉ Stat. p-value par ĉ Stat. p-value

2 1973 24.7 0.0520 2 1976 60.2 0.0000
4 1973 20.8 0.1706 4 1976 62.2 0.0000
8 1973 17.9 0.3610 8 1976 61.3 0.0000

12 2011 22.2 0.1132 12 1976 54.7 0.0000
16 2011 41.7 0.0001 16 1976 41.0 0.0001
24 2012 33.7 0.0018 24 1976 39.8 0.0002

Table: Results of the tests for values of the autoregressive order (par)
and the lag cut-off for the Bartlett estimator (qn).

*Note: We assume a change in trend occurred in 1991
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2 1973 24.7 0.0520 2 1976 60.2 0.0000
4 1973 20.8 0.1706 4 1976 62.2 0.0000
8 1973 17.9 0.3610 8 1976 61.3 0.0000

12 2011 22.2 0.1132 12 1976 54.7 0.0000
16 2011 41.7 0.0001 16 1976 41.0 0.0001
24 2012 33.7 0.0018 24 1976 39.8 0.0002

Table: Results of the tests for values of the autoregressive order (par)
and the lag cut-off for the Bartlett estimator (qn).

*Note: We assume a change in trend occurred in 1991
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Application to the CO2 Data

Fit an AR(par) model to the OLS residuals of the CO2 data.

Setting 4: Only coefficients governing covariates change.

F̂ L̂
qn ĉ Stat. p-value par ĉ Stat. p-value

2 1996 4.0 0.5016 2 2006 3.7 0.5529
4 1996 3.0 0.6911 4 2006 3.7 0.5462
8 1996 2.4 0.8193 8 2006 4.2 0.4696

12 1996 2.4 0.8360 12 2006 4.7 0.3860
16 1996 2.4 0.8332 16 2010 4.5 0.4191
24 1996 2.2 0.8681 24 2010 4.9 0.3509

Table: Results of the tests for values of the autoregressive order (par)
and the lag cut-off for the Bartlett estimator (qn).

*Note: We assume a change in trend occurred in 1991
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Application to the CO2 Data

Fit an AR(par) model to the OLS residuals of the CO2 data.

Setting 1: All regression coefficients change under H1

F̂ L̂
qn ĉ Stat. p-value par ĉ Stat. p-value

2 1991 174.6 0.0000 2 1977 77.8 0.0000
4 1988 114.8 0.0000 4 1976 84.6 0.0000
8 1988 77.0 0.0000 8 1977 78.2 0.0000

12 1988 60.2 0.0000 12 1977 61.9 0.0000
16 1989 54.5 0.0000 16 1976 47.9 0.0004
24 1988 56.5 0.0000 24 1977 46.0 0.0006

Table: Results of the tests for values of the autoregressive order (par)
and the lag cut-off for the Bartlett estimator (qn).
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Application to the CO2 Data

The Mauna Loa CO2 data:
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Application to the CO2 Data

The OLS residuals without accounting for changepoint:
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Application to the CO2 Data
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Application to the CO2 Data

The ACF of the OLS residuals without accounting for changepoint:
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Application to the CO2 Data
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Why the change in trend???

On June 15, 1991, Mount Pinatubo (in the Philippines) erupted:

Pumped tons of sulfur (SO2) into the stratosphere;

Less sunlight reached the ocean surface;

Cooler sea surface temperature meant more CO2 is absorbed
by the ocean.

Mauna Loa is a volcano itself:

Weak explosions

Particles do not reach the stratosphere;

No major effect on CO2.
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Application to the CO2 Data
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The 1976 changepoint in seasonality

The seasonal pattern before and after the 1976 changepoint:
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Why the change in seasonality???

Seasonality in CO2 is due to vegetation growth:

Why are the oscillations changing?

Increased prominence of droughts (due to global warming)

Increased levels of vegetation (due to higher CO2 levels)

Increased prominence of agriculture

Seasonal amplitude is likely steadily increasing (no true
changepoint)

Changes in trend and seasonality caused by separate environmental
mechanisms

Need to test for the different types of changes separately
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RegCpt: A R package that implements the method

In development
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